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Early identification and detection of abnormal patterns is vital for a number of applications. In manufac-
turing for example, slide shifts and alterations of patterns might be indicative of some production process
anomaly, such as machinery malfunction. Usually due to the continuous flow of data, monitoring of man-
ufacturing processes and other types of applications requires automated control chart pattern recognition
(CCPR) algorithms. Most of the CCPR literature consists of supervised classification algorithms. Fewer
studies consider unsupervised versions of the problem. Despite the profound advantage of unsupervised
methodology for less manual data labeling their use is limited due to the fact that their performance is
not robust enough and might vary significantly from one algorithm to another. In this paper, we propose
the use of a consensus clustering framework that takes care of this shortcoming and produces results that
are robust with respect to the chosen pool of algorithms. Computational results show that the proposed
method achieves not less than 79.10% G-mean with most of test instances achieving higher than 90%. This
happens even when in the algorithmic pool are included algorithms with performance less than 15%. To
our knowledge, this is the first paper proposing an unsupervised consensus learning approach in CCPR.
The proposed approach is promising and provides a new research direction in unsupervised CCPR

literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Time series analysis is an area of research with numerous appli-
cation in many fields of science and engineering (Box, Jenkins, &
Reinsel, 2013). In manufacturing, for instance, time series pattern
recognition is important since slide alterations might be indicative
of a malfunction that requires a course of appropriate corrective
actions (e.g. maintenance). Manual monitoring is tedious and
requires specialized personnel’s undistracted attention. For this,
machine learning based automated algorithms, also known as con-
trol chart pattern recognition (CCPR) algorithms, have been pro-
posed to detect abnormal behaviors. The term was originally
coined by Shewhart (1931). An early taxonomy of the patterns
was presented in an early publication of the Western Electric
Company (1958). Fig. 1 depicts six of the most common abnormal
patterns studied in the literature.

These different abnormal patterns are usually related to a
specific malfunction and their early detection can provide useful
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insights for corrective actions and thus improve systems reliability.
In the crank case manufacturing operations, up trend and down
trend patterns reveal tool wear and malfunction (El-Midany,
El-Baz, & Abd-Elwahed, 2010a). Shift patterns might be associated
with variation related to operator, material or machine instrument
(Davy, Desobry, Gretton, & Doncarli, 2006; EI-Midany et al., 2010a).
Cyclic patterns are associated with voltage variability (Kawamura,
Chuarayapratip, & Haneyoshi, 1988) but they can also appear in
manufacturing processes like frozen orange juice packing
(Hwarng, 1995). In the car manufacturing industry certain anoma-
lies in the automotive body assembly process appear as up/down
trends, cyclic, and systematic patterns (Jang, Yang, & Kang, 2003).
Up/down trend patterns can be used in order to detect abnormal
stamping tonnage signals (Jin & Shi, 2001). Finally up/down trend
signals appear in paper making industry (Chinnam, 2002; Cook &
Chiu, 1998) whereas uptrend patterns by itself can be used for
detecting fault states in end-milling process (Zorriassatine,
Al-Habaibeh, Parkin, Jackson, & Coy, 2005).

During several years, different pattern recognition algorithms
have been studied in the literature with the proposed approaches
ranging over a broad spectrum of machine learning algorithms.
The majority of the proposed schemes follow the supervised
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Fig. 1. Examples of six basic abnormal patterns.

learning framework, in which a model is trained with a historical
dataset and then the trained model is used for prediction on an
unknown testing data set. Some representative algorithms under
this category include knowledge-based expert systems and artifi-
cial neural networks (El-Midany, El-Baz, & Abd-Elwahed, 2010b;
Hwarng, 1995; Hwarng & Hubele, 1992, 1993a, 1993b; Guh &
Hsieh, 1999; Kim, Jitpitaklert, Park, & Hwang, 2012; Perry,
Spoerre, & Velasco, 2001; Wu & Yu, 2010; Yu & Xi, 2009), Bayes
classification (Adam et al., 2011), and support vector Machines
(SVM) (Camci, Chinnam, & Ellis, 2008). In more recent literature
decomposition techniques are used as a preprocessing step before
classification. Some examples include wavelets (Du, Huang, & Lv,
2013), independent component analysis (Cheng & Huang, 2013;
Kao, Lee, & Lu, 2014) and extreme-point symmetric mode decom-
position (Yang, Zhou, Liao, & Guo, 2015). In another recent study
Wau, Liu, and Zhu (2014) proposed the combined approach of clas-
sification trees and SVM. For a comprehensive literature review we
refer the reader to Hachicha and Ghorbel (2012) and Veiga,
Mendes, and Lourenco (2015).

On the other hand, research on unsupervised CCPR algorithms is
relatively limited. Unsupervised learning assumes no prior

information and aims to categorize the data samples based only
on their features (properties) (Warren Liao, 2005). The first unsu-
pervised approach for CCPR was proposed by Al-Ghanim (1997)
who developed an unsupervised self-organizing neural paradigm.
Al-Ghanim and Kamat (1995) presented a CCPR technique using
correlation analysis on trend, systematic and cyclic patterns and
presented results with evaluation methods. Wang and Kuo
(2007) used three different fuzzy clustering algorithms on CCPR
for six patterns and compared their performance.

Unsupervised learning techniques have the profound advantage
of not requiring prior labeling knowledge for prediction. On the
other side, however, their behavior can be instable and sometimes
inconsistent across algorithms or even across different runs of the
same algorithm. In the clustering literature this shortcoming is
normally addressed through ensemble or consensus learning
schemes. Under this approach a number of clustering with differ-
ent results is combined to a single clustering that is more robust
according to some optimization criteria (Vega-Pons &
Ruiz-Shulcloper, 2011; Xanthopoulos, 2014). However this idea
has not been implemented yet for the CCPR problem. We anticipate
that consensus framework will provide CCPR robust methodologies
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able to overcome the problems of individual clustering algorithms
and thus open new directions for more research in unsupervised
CCPR literature. In this paper we propose such a framework for
unsupervised CCPR based on the concept of consensus graph and
we study its behavior for a variety of CCPR problems. The rest of
the paper is organized as follows. In Section 2 we provide a theo-
retical background of the consensus clustering problem. In
Section 3 we describe the methodology used along with the evalu-
ations metrics for assessment of the results. In Section 4 we pre-
sent results and in Section 5 we conclude and discuss the future
work.

2. Consensus clustering

Clustering algorithms might give different clustering of the
same data by several times of running or using different algo-
rithms. For instance, k-means clustering gives different results
for the same data by choosing different initial solution. This phe-
nomenon is well studied and is due to local optima convergence
of k-means.

The general scheme for consensus clustering is depicted in
Fig. 2. Consensus clustering consists of two steps. In the first steps
we try to gather different clusterings (Al-Sultana & Khan, 1996).
These clusterings can be the result of different data sources, differ-
ent clustering algorithms, different runs of a nondeterministic
clustering algorithm and other factors. In the next step we will
use these clusterings to construct the consensus clustering by the
help of consensus function (Selim & Ismail, 1984).

One of the earliest approaches for obtaining consensus cluster-
ing is solving the k-median problem for a set of clusterings, which
can be formulated as an optimization problem (Grotschel &
Wakabayashi, 1989). For a set of n different clusterings
P = {Pi};_, we define r{ =1 if samples s; and s; belong to the
same cluster in clustering P, and O if they do not. Then we define
the decision variable rj whose value is 1 if points s; and s; belong
to the same cluster in the consensus clustering and O otherwise.
The objective function can be the sum of distances between the
consensus clustering and the clusterings in P with respect to some
distance measure d(-, -). For a Euclidean distance measure this can
be written as:

STd(P.P) = SIS0 )’ (1)
i i ij

Since rj}’ and r; € {0, 1}, the function can be linearized:
oD+ (-2 2)
[T (3]

Since the first term is constant, the objective function can be
written as:

c+ ZCUTU‘ (3)
ij

where:

=330 =Y (-2 4)
k ij

k

Finally, the optimization problem is formulated as follows:

min > “¢;ry (5a)
ij

st. =1, i=1,...,n (5b)
rj=ryp iLj=1,....n (5¢)
ri+mx—ra <1, ijk=1,....n (5d)
rj €{0,1}, ij=1,....n (5e)
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Fig. 2. Consensus clustering scheme.

Since r; = rj; these variables can be replaced by x;, and r; can be
dropped since it is a fixed variable. By setting weights
wj; = ¢j + ¢ the above optimization problem is equivalent to the
following problem:

min > wx; (6a)
1<i<j<n

st Xj+xp—xp<1, 1<i<j<k<n (6b)
xj— X +xx <1, 1<i<j<k<n (6¢)
—Xij+Xjk+Xik<1, 1<i<j<k<n (Gd)
x;€{0,1}, 1<i<j<n (6e)

The polyhedron of this problem is the same as the one in the clique
partition problem (Grotschel & Wakabayashi, 1989). This problem is
NP-complete and it is not possible to solve it in large instances
(Sukegawa, Yamamoto, & Zhang, 2012). Several metaheuristics have
been developed for obtaining “good” solutions in a “reasonable”
time. Hansen, Ruiz, and Aloise (2012) proposed a metaheuristic
method for normalized cut segmentation. Arya et al. (2004) ana-
lyzed local search heuristics for the metric k-median and facility
location problems, Chen (2009) also presented a new heuristic
method for k-median and k-mean clustering problems.

In addition, the solution of the k-median problem for consensus
clustering has been criticized for not producing tight enough clus-
ters. Lancichinetti and Fortunato (2012) mention that explicit opti-
mization of global quality functions usually fail to identify clusters
in practical settings. Based on their argument exact optimization
approaches have serious limitations and the optimization will
not result in good clusters.

Here, we employ a variant of the consensus clustering
approach, proposed by Lancichinetti and Fortunato (2012), based
on the concept of the consensus graph and meta-clustering
approach (clustering the consensus clustering graph). This
approach, applied to a citation co-authorship dataset, was found
to produce more meaningful results in terms of content and cluster
evaluation metrics.

The contribution in this paper is twofold: (1) First we employ
the network-based consensus clustering approach as a framework
for the quality control CCPR problem; and (2) we examine the algo-
rithm from a robustness point of view, especially for scenarios
when individual clustering algorithms are known not to be a “good
choice” for the problem under consideration. Also, we study the
CCPR problem as an imbalanced clustering problem meaning that
the examples for normal patterns greatly outperform the ones for
abnormal patterns (Xanthopoulos & Razzaghi, 2014).

2.1. Consensus graph

Under the presented framework, the consensus graph is a con-
struct necessary for obtaining the consensus clustering. Each edge
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on the consensus graph has the weight equal to a; = t;/n where t;
is the number of times where samples i and j were assigned to the
same cluster. A simple illustration of the consensus graph construc-
tion is given in Fig. 3.

For this toy example (Fig. 3) with seven data sample and four
clusterings, the consensus graph adjacency matrix is given by:

1/4 2/4 4/4 1/4 0 0 O
2/4 1/4 2/4 3/4 1/4 0 0
4/4 2/4 1/4 1/4 0 0 0
A={ay}] ,=|1/4 3/4 1/4 1/4 1/4 0 0

0 1/4 0 1/4 1/4 3/4 3/4
0 0 0 0 3/4 1/4 4/4
L0 0 0 0 3/4 4/4 1/4

In this graph, by construction, each edge has a weight between 0
and 1. The final solution can be obtained by applying a clustering
algorithm to the network.

3. Methodology
3.1. Data description

We consider the CCPR problem from the scope of time series
clustering. A time series is represented by D = {d;,d, ...,d,} where
d; € R" with w being the number of features, also referred to as the
window length. We are interested in assigning each d; to a cluster
that corresponds to normal and abnormal pattern. Data have been
simulated using the most common models found in the literature
(exact mathematical description can be found in Appendix A).

3.2. Clustering algorithms

For constructing our consensus matrix we will use five different
clustering algorithms, including: Hierarchical, k-means, fuzzy and
two spectral clustering algorithms. Each of these algorithms gives
different clusters. Some of these algorithms give the same results
after several runs but some of them such as k-means do not do
so. Without loss of generality in the present paper we do not deal
with multiple run variability of the same algorithm on the same
data, but we run these five algorithms on the same data once. In
a real scenario, one does not know if a specific algorithm is appro-
priate or not for a certain dataset. Since the scheme is unsupervised
no labeling information is known a priori and this usually makes
the choice of clustering algorithm problematic. Here, we examine
the robustness of clustering quality in scenarios in which not all
of clustering algorithms performs well individually.

Each clustering algorithm labels each d; as 1 or 2 since we only
need two clusters (normal or abnormal). After getting the results of
different clusterings we construct the consensus matrix. Consensus
matrix A is a n x n matrix, and each element has a value between 0
to 1. For each aj, the value shows how many times out of 5, d; is in
the same cluster as d;.

For decision making and evaluation purposes through voting,
we decide if two data are in the same cluster or not. If the value
of g; is greater than 2, then d; and d; are in the same cluster; and
if the value is smaller or equal than 2 then d; and d; are not in
the same cluster. In the following sections we give a brief descrip-
tion of the clustering algorithms we used and then evaluate the
results.

3.2.1. Clustering algorithms pool
The k-means is a partitioning method first proposed by
MacQueen et al. (1967). Given a set of n unlabeled samples, a

partitioning method creates k partitions of data, where each parti-
tion represents a cluster containing at least one object and k < n. In
k-means, partitions are crisp meaning that each object belongs to
exactly one cluster, and each cluster is represented by the mean
value of the objects in that cluster. The goal of k-means is to min-
imize the objective function which is the total distance between all
objects from their respective cluster centers. The k-means is an
iterative algorithm that starts by choosing arbitrarily initial centers
for the clusters and then assigning objects to the closest cluster
centers and updating the clusters. This process continues until
the value of the objective function is minimized.

C-means, the fuzzy variant of k-means, was first proposed by
Dunn (1973) and improved by Bezdek (1981). In fuzzy clustering,
partitions are not crisp, meaning that one object can belong to
more than one cluster to a different degree. Fuzzy clustering asso-
ciates each pattern to a cluster with a membership function. One
can obtain crisp partitions through fuzzy c-means by assigning
each sample to the cluster with the highest membership value.

Hierarchical clustering iteratively assigns data to different clus-
ters by forming a tree structure. A hierarchical clustering results in
a dendrogram representing the clusterings and similarity levels,
and by breaking the dendrogram in different levels, one can obtain
different clusterings. There are two types of hierarchical clustering:
Agglomerative (bottom up) and Divisive (top down).

Hierarchical clustering has the problem of adjusting once a
merging decision is made. Different measures to calculate the dis-
tance between clusters results in different variations of hierarchi-
cal clustering. Such measures include, but are not limited to, the
single link, complete link and minimum variance (Murtagh, 1983).

Different distance measures and linkage criteria can be used for
hierarchical clustering. Regarding our data, we used agglomerative
because this is the most popular one. We also used euclidean dis-
tance measure and single linkage method, because we want to pre-
vent the effects of outliers and usually single link algorithms are
more versatile than complete links (Jain, Murty, & Flynn, 1999).

Spectral clustering techniques use the eigenvalues of the
Laplacian matrix. Spectral clustering goes back to Donath and
Hoffman (1973) when they proposed the use of eigenvectors for
graph partitions. In this paper, we used two spectral clustering
algorithms, one proposed by Shi and Malik (2000) for solving the
perceptual grouping problem in computer vision, and one pro-
posed by Ng, Jordan, and Weiss (2002).

The selected pool demonstrates a diverse algorithmic character-
istic and it is known that they each one of them is preferred
depending on the structure of the dataset. For example k-means
is preferred when clusters form normally distributed clouds,
whereas spectral clustering tends to form more balanced clusters.
Hierarchical clustering is a greedy iterative approach that has been
a popular choice for many applications including medical litera-
ture. Although it is known and anticipated that each algorithm
by itself might not be the optimal choice for each test problem
under consideration it is of interest to study the consensus behav-
ior and its robust characteristic for different clustering problems.

3.3. Evaluation methodology

Different evaluation methods can be used for imbalanced data.
The evaluation method we use is based on the confusion matrix. In
this data set, data is either in a positive class or negative class, and
the algorithms decides on that. So, all in all there are four types of
data. If data is in t positive class and algorithm identifies them as
positive, then it is true positive. But if the algorithm places them
in the negative class then it is false negative and the same thing
applies to the negative class data. Based on this rule, we calculate
the sensitivity and specificity:
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Fig. 3. Consensus clustering graph illustration, (I), (II), (Ill), (IV) are four different clusterings and (V) is the consensus created based on them.
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Fig. 4. Consensus clustering results based on G-mean calculations.
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where TP, FN, FP, TN stands for True Positive, False Negative, False
Positive and True Negative, respectively. Sensitivity shows how well

6771

the algorithm performs on the positive class and specificity shows
how well the algorithm performs on the negative class. The geomet-
ric mean (G-mean) of sensitivity and specificity is also defined as

G — mean = +/Specificity x Sensitivity

8)
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Table 1
Comparison between the methods based on G-mean for different patterns and parameters. The detailed breakdown in sensitivity and specificity can be found in Appendix A
(Table A.3).

Abnormal Pattern Shi-Malik Jordan-Weiss Fuzzy Hierarchical k-Means 2-Cons. 3-Cons. 4-Cons. 5-Cons. Parameters
Uptrend 19.66 54.85 100.00 100.00 100.00 100.00 100.00 100.00 100.00 (60,0.205)
23.78 4411 35.40 14.14 69.44 86.96 64.48 90.28 90.88 (85,0.006)
23.20 53.11 54.77 14.14 54.13 89.07 59.91 84.57 79.10 (60,0.004)
Downtrend 13.71 31.62 100.00 100.00 100.00 100.00 100.00 100.00 100.00 (60,0.205)
19.56 46.47 45.00 14.14 38.77 94.61 54.44 81.79 86.36 (85,0.006)
34.72 45.56 56.26 0.00 53.78 88.37 50.44 87.26 82.99 (60,0.004)
Upshift 0.00 42.65 77.26 14.14 99.94 100.00 100.00 100.00 98.90 (60,0.805)
23.96 39.19 69.10 0.00 33.61 92.32 75.10 99.18 87.07 (80,0.405)
37.39 46.16 55.62 0.00 58.86 87.52 50.61 90.04 83.14 (40,0.205)
Downshift 50.01 57.45 78.41 14.14 99.84 100.00 100.00 100.00 99.22 (60,0.805)
19.62 48.11 62.71 14.14 52.78 89.95 56.16 100.00 90.73 (80,0.405)
28.95 45.50 54.56 0.00 39.61 89.52 49.14 77.95 85.75 (40,0.205)
Cyclic 23.74 58.06 0.00 14.14 99.57 100.00 100.00 100.00 98.08 (50,1.205)
27.33 62.03 9.59 0.00 75.25 96.93 100.00 99.91 89.70 (50,0.805)
25.74 44.80 23.15 0.00 44.40 88.23 54.85 84.65 81.24 (40,0.405)
Systematic 2492 48.52 0.00 14.14 99.73 93.95 100.00 100.00 98.86 (60,0.805)
30.44 59.40 0.00 0.00 78.13 97.92 100.00 94.20 91.12 (50,0.605)
40.47 49.01 48.37 10.00 53.95 87.57 4791 81.71 80.90 (20,0.205)
g0
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Fig. 5. Robustness of consensus clustering in comparison to other clustering algorithms for systematic pattern. (a) is the worst state for systematic parameter and (b) is a
good state.
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Table 2

Running times for different datasets. The first column shows the total running time (individual algorithms plus consensus) and each other column running time that correspond

to a specific algorithm.

Data Size Total time Cons. Fuzzy Hierarchical Jordan k-Mean Shi-Malik
100 0.86 0.02 0.03 0.20 0.26 0.05 0.30
300 0.43 0.18 0.01 0.02 0.13 0.00 0.08
500 1.48 0.47 0.01 0.03 0.55 0.00 0.40
700 3.79 0.89 0.01 0.07 1.62 0.01 1.19
900 7.84 1.51 0.02 0.11 3.55 0.01 2.64

1000 10.43 1.77 0.02 0.15 4.92 0.01 3.58
1500 38.91 443 0.04 0.52 20.81 0.02 13.10
2000 78.73 7.22 0.04 0.93 41.25 0.02 29.26
3000 258.21 17.09 0.06 2.69 139.33 0.03 99.01
4000 599.49 29.34 0.09 6.51 329.52 0.06 233.97
5000 1233.42 45.81 0.10 11.43 685.83 0.06 490.18
6000 1993.19 66.19 0.13 19.82 1111.99 0.07 794.99
7000 3428.73 115.55 0.41 46.37 1951.26 037 1314.78
8000 4829.83 122.89 0.25 50.98 2744.49 0.09 1911.13
9000 7233.65 161.93 0.35 75.33 4086.10 0.23 2909.71
10,000 9084.15 178.99 0.25 90.18 5171.32 0.18 3643.23

which is a composite measure that takes into account both sensitiv-
ity and specificity (Kubat, Holte, & Matwin, 1997, 1998).

4. Results

In this section, the results of the given algorithm for imbalanced
data is given based on the evaluation methods defined in
Section 3.3 and data defined in Section 3.1. This algorithm is imple-
mented in MATLAB Version 7.8 (R2009a). In Fig. 4 the G-mean
results for consensus matrix of for different patterns are given.
For each pattern, G-mean is calculated for different window
lengths and pattern parameters. For each test problem we created
1000 data samples out of which 95% are normal and only 5% abnor-
mal in order to account for the imbalanced nature of the problem
in real settings (Xanthopoulos & Razzaghi, 2014). For clustering the
consensus clustering matrix A we employed a majority voting
scheme that is simple and keeps the last step of the computational
effort low (Saeed, Salim, & Abdo, 2012).

As the charts in Fig. 4 show, the clustering problem becomes
less challenging as we increase the window length and the
abnormal pattern parameter. For each pattern, we can distinguish
between three problem categories based on the
parameter-window length combination and the corresponding
G-mean performance: (1) easy problems (white area), (2) medium
problems (gray area); and (3) difficult problems (dark area). This
is consistent with previous observations (Xanthopoulos &
Razzaghi, 2014). For example, as Fig. 4 shows, a window length
15 and trend parameter 0.005¢0 is a challenging problem.
However, for trend pattern, a window length 90 and trend param-
eter 1.055 is an easy problem. The problem difficulty varies for
different patterns, For instance, while (80,1.055) is an easy prob-
lem for trend pattern, it is a difficult one for cyclic pattern. In
Table 1, we compare consensus clustering results with other algo-
rithms in three different problems of each pattern. In this table,
we only included G-mean results, specificity and sensitivity are
included in the table in appendix. In these points there is a major
change in the consensus clustering result and they can be good
representatives for comparing the results of the consensus with
each of the algorithms. As shown in the table, we have compared
the results of the consensus clusterings that are constructed
based on two, three, four and the original five algorithms. As
the numbers are showing, consensus clustering that is created
by five algorithms is producing more stable and reliable results,
sometimes other consensuses are giving better G-means but
those are not reliable and are dependent on the single algorithms,
as we increase the number of algorithms, consensus becomes

more stable, less relying on single algorithms and produces better
results but at the cost of higher run time.

The robustness of the clustering algorithm plays an important
role in some problems, a desirable clustering algorithm should
cluster data the same way after several times of running. For mea-
suring this characteristic of the consensus and comparing it with
other algorithms, we used box plots as shown in Fig. 5. Using
box plots gives information about the degree of dispersion and
variability of the clustering results. For our problem, we run each
clustering algorithm 30 times on the same data and at the end
we calculate the g-means for each run of the algorithms. Each
box plot shows the G-means of each of the algorithms for 30 times
of run. As the figure is showing, Hierarchical clustering and Shi-
Malik algorithms are giving the same result each time, but consen-
sus is more robust than the other algorithms for both cases.

Another important factor in evaluating algorithm performance
is their run time. In Table 2 the run time of the algorithm in sec-
onds is given for different data sizes. The run time is calculated
on a laptop with Intel core i7 CPU and 8 GB of RAM. This is the run-
ning time for systematic error patterns, which was the highest
among all patterns. As it is shown in the figure, the highest run
time belongs to spectral clustering algorithms and those are the
reasons behind exponential increase in run time. In a practical
setup, the run time can be decreased significantly through paral-
lelization. We can see that the required time for spectral clustering
computational time is disproportionally computationally intensive
compared to the other algorithms. This is expected since it requires
computation of the eigenvalues and eigenvectors of the Laplacian
matrix which is a computationally intensive procedure and highly
depends on the size of the dataset.

5. Discussion and conclusion

In this paper, we proposed an unsupervised consensus frame-
work for solving the CCPR problem. To the best of our knowledge
this is the first time that the CCPR problem has been formulated
as a network clustering problem.

The robust solution seems to be consistently robust with
respect to individual algorithms and is not affected much by indi-
vidual poor clusterings. The use of consensus helps us find the sim-
ilarities and eliminate weak clusters. This is very useful when
dealing with high dimensional datasets where the optimal choice
of clustering algorithm is not a priori known. Thus through this
proposed framework we wish to motivate more research for unsu-
pervised schemes with robust results. Computationally, imple-
menting consensus clustering can be significantly faster through



Table A.3
Comparison between the methods based on sensitivity and specificity for different patterns and parameters.

Abnormal pattern  Shi-Malik Jordan-Weiss Fuzzy Hierarchical k-Means 2-Cons. 3-Cons. 4-Cons. 5-Cons. Parameters
Sen Spec Sen Spec Sen Spec Sen Spec Sen Spec Sen Spec Sen Spec Sen Spec Sen Spec (w, Par)

Uptrend 96.63 4.00 4853 62.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 (60,0.205)
94.21 6.00 46.32 42.00 48.21 26.00 100.00 2.00 52.42 92.00 87.16 87.36 56.89 50.19 87.59 84.98 86.10 9591  (85,0.006)
89.68 6.00 48.63 58.00 50.00 60.00 100.00 2.00 50.52 58.00 88.23 87.39 54.74 50.02 83.31 82.06 80.02 7820  (60,0.004)

Downtrend 94.00 2.00 50.00 20.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 (60,0.205)
95.68 4.00 4695 46.00 48.21 42.00 100.00 2.00 44.21 34.00 91.05 87.62 52.51 50.64 80.52 79.27 85.15 87.59  (85,0.006)
86.11 14.00 51.89 40.00 51.05 62.00 99.89 0.00 53.57 54.00 87.90 87.43 50.27 50.10 86.40 85.54 84.13 81.87  (60,0.004)

Upshift 92.63 0.00 50.53  36.00 59.68 100.00 100.00 2.00 99.89  100.00 93.68 87.76 87.01 75.72 99.16 98.33 97.81 100.00 (60,0.805)
95.68 6.00 48.00 32.00 53.05 90.00 99.89 0.00 51.36 22.00 89.82 87.38 61.31 50.06 91.51 84.44 83.74 90.53  (80,0.405)
93.22 15.00 49.56  43.00 51.56 60.00 99.89 0.00 55.89 62.00 87.49 87.46 50.26 49.91 87.42 84.87 80.87 85.46  (40,0.205)

Downshift 96.21 26.00 51.58 64.00 61.47 100.00 100.00 2.00 99.68  100.00 93.92 88.21 87.11 75.89 98.73 97.47 99.44 100.00 (60,0.805)
96.21 4.00 5032 46.00 50.42 78.00  100.00 2.00 44.94 62.00 88.69 87.45 53.23 50.46 92.25 85.10 84.90 96.97  (80,0.405)
10.22 82.00 45.00 46.00 51.33 58.00 99.89 0.00 52.31 30.00 88.54 87.57 49.55 49.97 79.66 81.41 82.88 88.73  (40,0.205)

Cyclic 93.89 6.00 49.58 68.00 39.79 0.00 100.00 2.00 99.15 100.00 93.90 88.17 87.08 75.83 98.37 96.77 96.83 99.34  (50,1.205)
93.37 8.00 52.00 74.00 46.00 2.00 99.89 0.00 57.78 98.00 91.61 86.59 73.06 53.37 89.73 80.59 82.75 97.22  (50,0.805)
94.67 7.00 46.67 43.00 44.67 12.00 99.89 0.00 51.89 38.00 87.69 87.14 52.36 49.99 83.14 81.66 83.17 79.34  (40,0.405)

Systematic 6.21 100.00 49.05 48.00 37.05 0.00  100.00 2.00 99.47  100.00 90.67 87.51 86.86 75.45 88.99 79.19 97.74  100.00 (60,0.805)
92.63 10.00 51.89 68.00 44.42 0.00 99.89 0.00 61.05 100.00 92.56 87.50 72.11 52.00 88.81 83.73 83.04 100.00 (50,0.605)
86.22 19.00 5222  46.00 49.78 47.00  100.00 1.00 48.52 60.00 87.50 87.42 48.97 50.04 82.42 83.13 81.57 80.24  (20,0.205)
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parallelization and thus to become more appealing for real time
applications.

Here is must be noted that the two or multiple class approaches
such as the one proposed in this manuscript or others explored in
CCPR literature can be used only when abnormal data are available.
Although this might be the case in the majority of production con-
trol problems still there might be exceptions especially in applica-
tions where abnormal data are indicative of a rare but catastrophic
event (e.g. temperature elevation in a nuclear plant). When this is
the case the abnormal pattern detection problem can be studied
under the framework of one class classification and/or outlier
detection (Brun, Saggese, & Vento, 2014; Gupta, Gao, Aggarwal, &
Han, 2014; Kind, Stoecklin, & Dimitropoulos, 2009). Overall, in
applications where one wishes to detect outlier points in addition
to the anticipated abnormal patterns it is possible to use consensus
clustering along with a outlier detection algorithmic scheme.

Future research directions include development of a weighted
consensus scheme able to adjust each clusterings contribution to
consensus as well as the generalization to the multi class CCPR
problem. In addition, applicability to real datasets must be
explored. At the moment, as pointed out in the review paper of
Hachicha and Ghorbel (2012) 95.59% of the literature about CCPR
are based on simulated data evaluations.

Appendix A. Data model description

The simulation method we used for generating data uses differ-
ent formula for different patterns. An implementation of this data
generator can be downloaded from the MATLAB file exchange.'
These formulas are used in the literature for different CCPR problems
(Guh & Hsieh, 1999; Yang & Yang, 2005). For a normal pattern, the
pattern has a normal distribution, so let A(t) be a vector such as

A" = [ay,0a,,...,a;]. Then A(t) is a normal pattern if:

A(t) = n(t) (A1)

where, n(t) follows a normal distribution N(0, 1).Upshift and down-
shift patterns are defined as:

A(t) = n(t) +ud (A2)

where, u = 1 after shift and u = 0 before shift. d is the shift param-
eter which will be chosen later for different datasets. Uptrend and
downtrend patterns will be defined as:

A(t) = n(t) £ dt (A3)

where d is the trend slope, which will be chosen later for different
data sets. Cyclic pattern is as below:

t

A(t) = n(t) + dsin (2%) (A4)

where o is the cycle length and d is the cyclic parameter. Finally,
systematic patterns will be defined as:

A(t) =n(t) + (—1)'d (A5)
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