
Journal of Hydro-environment Research 14 (2017) 1–18
Contents lists available at ScienceDirect

Journal of Hydro-environment Research

journal homepage: www.elsevier .com/locate /JHER
Research papers
f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive
water use management
http://dx.doi.org/10.1016/j.jher.2016.05.007
1570-6443/� 2016 International Association for Hydro-environment Engineering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights reserved

⇑ Corresponding author.
E-mail addresses: f.rezaei@cv.iut.ac.ir (F. Rezaei), hasafavi@cc.iut.ac.ir (H.R.

Safavi), amirchi@utep.edu (A. Mirchi), k.madani@imperial.ac.uk (K. Madani).
Farshad Rezaei a, Hamid R. Safavi a,⇑, Ali Mirchi b, Kaveh Madani c

aDepartment of Civil Engineering, Isfahan University of Technology, Isfahan, Iran
bDepartment of Civil Engineering and Center for Environmental Resource Management, University of Texas at El Paso, El Paso, USA
cCentre for Environmental Policy, Imperial College London, London, UK
a r t i c l e i n f o

Article history:
Received 5 August 2015
Revised 26 March 2016
Accepted 4 May 2016
Available online 21 September 2016

Keywords:
Conjunctive use
Simulation-optimization model
Multi-Objective Particle Swarm
Optimization (MOPSO)
Fuzzy inference system
Artificial neural networks
a b s t r a c t

In recent years, evolutionary techniques have been widely used to search for the global optimum of com-
binatorial non-linear non-convex problems. In this paper, we present a new algorithm, named fuzzy
Multi-Objective Particle Swarm Optimization (f-MOPSO) to improve conjunctive surface water and
groundwater management. The f-MOPSO algorithm is simple in concept, easy to implement, and compu-
tationally efficient. It is based on the role of weighting method to define partial performance of each point
(solution) in the objective space. The proposed algorithm employs a fuzzy inference system to consider
all the partial performances for each point when optimizing the objective function values. The f-MOPSO
algorithm was compared with two other well-known MOPSOs through a case study of conjunctive use of
surface and groundwater in Najafabad Plain in Iran considering two management models, including a
typical 12-month operation period and a 10-year planning horizon. Overall, the f-MOPSO outperformed
the other MOPSO algorithms with reference to performance criteria and Pareto-front analysis while
nearly fully satisfying water demands with least monthly and cumulative groundwater level (GWL) vari-
ation. The proposed algorithm is capable of finding the unique optimal solution on the Pareto-front to
facilitate decisions to address large-scale optimization problems.
� 2016 International Association for Hydro-environment Engineering and Research, Asia Pacific Division.

Published by Elsevier B.V. All rights reserved.
1. Introduction

Conjunctive use of surface water and groundwater resources is
commonly practiced in arid and semi-arid regions of the world to
meet the growing water demand of urban, agricultural, and indus-
trial users, while reducing climate change related water scarcity
(Peralta et al., 1995; Marino, 2001; Schoups et al., 2006;
Medellin-Azuara et al., 2008; Safavi et al., 2010; Connell-Buck
et al., 2011;Mirchi et al., 2013).While surfacewater often has lower
extraction cost as compared with groundwater withdrawal, it has
higher probability of supply failure due to hydrologic variability,
justifying the extensive use of more costly but reliable groundwater
resources (Burt, 1964; O’Mara, 1988; Fisher et al., 1995; Yang et al.,
2009), especially in arid areas of the world. Using both resources
conjunctively can increase system reliability by decreasing water
supply fluctuations that may disrupt day-to-day activities of users
and cause economic loss (Montazar et al., 2010).
Different approaches and techniques have been applied to opti-
mize the conjunctive use of surface water and groundwater
(Vedula et al., 2005), including linear programming, dynamic pro-
gramming, hierarchical optimization, non-linear programming and
evolutionary algorithms. Classical optimization methods are typi-
cally based on gradient search techniques. The numerical estima-
tion of the gradients is computationally intensive and can be
applied only when the objective functions are differentiable and
continuous in domain. Furthermore, these conventional methods
are not applicable when searching for the global optimum of com-
binatorial non-linear non-convex problems. To address these
drawbacks, population-based evolutionary techniques have been
employed along with simulation models in the last four decades
to develop efficient conjunctive management models (Maddock,
1974; Peralta et al., 1988; Willis et al., 1989; Ibanez-Castillo
et al., 1997; Karamouz et al., 2004; Safavi et al., 2010; Singh and
Panda 2013; Safavi and Esmikhani, 2013).

Bazargan-Lari et al. (2009) developed a conflict resolution
methodology for conjunctive use of water resources by first gener-
ating trade-off curves using a multi-objective genetic algorithm,
and then selecting the best non-dominated solution using the
.
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Young conflict resolution theory (Young, 1993). Marques et al.
(2010) applied a two-stage quadratic programming model to max-
imize economic benefits of conjunctive use from crops, irrigation
technology, the areas under permanent and annual crops, and sur-
face water supply. They assumed groundwater withdrawal is con-
strained by artificial recharge of the aquifer, while also limiting the
surface water supply in each year to a ‘‘sustainable” annual
amount. A set of hydrologic stochastic events with respective prob-
ability of occurrence were also considered to address uncertain cli-
mate change conditions. Rezapour Tabari and Soltani (2013)
developed a multi-objective model for maximizing the reliability
of an irrigation system’s water supply, while minimizing the cost,
using non-dominated sorting genetic algorithm (NSGA-II) to pro-
vide optimal compromising objectives. Peralta et al. (2014) used
a simulation-optimization conjunctive use model. They applied
an artificial neural network model to simulate various flow interac-
tions, as well as an NSGA model to optimize water allocations by
maximizing water supply, and hydropower production, while min-
imizing the operation costs of surface water transfer and ground-
water extraction.

Due to multi-objective nature of most real-world water man-
agement problems with conflicting and/or incommensurable
objectives (Madani and Lund, 2011), developing efficient and
robust multi-objective water resources system optimization tech-
niques remains an active research area. Traditional multi-
objective optimization approaches such as weighting and e-
constraint methods can produce non-dominated solutions by
transforming the multi-objective problems to single-objective ones
based on bottom-up information flow. By contrast, in an evolution-
ary optimization model, the top-down information flow through
implementation of preference methods is also needed to detect a
unique optimum solution (Abido, 2010; Fallah-Mehdipour et al.,
2011).

Particle Swarm Optimization (PSO) algorithm (Kennedy and
Eberhart, 1995) is the most commonly used stochastic
population-based evolutionary computation technique inspired
by the evolution of nature (Kennedy and Eberhart, 1995). Com-
pared to other meta-heuristic techniques (e.g., genetic algorithm),
PSO has a more flexible and well-balanced mechanism to enhance
and adapt the global and local exploration, needing fewer particles
(solutions) to provide the required diversity and faster conver-
gence rate (Abido, 2010). A Vector Evaluated PSO (VEPSO) was
developed by Parsopoulos and Vrahatis (2002) based on the con-
cept of Vector Evaluated Genetic Algorithm (VEGA) to perform
multi-objective optimization. VEPSO uses one swarm for each
objective and the best particle of each swarm is used as the global
best particle to determine particle velocities and positions. Hu and
Eberhart (2002) presented a multi-objective PSO (MOPSO) with a
dynamic neighborhood strategy to obtain the global best for each
particle in bi-objective problems. In this method, the global best
particle in each stage is the local optimum among all neighbors
selected in the previous stage with respect to the other objective
value. However, this process poses limits to algorithm performance
due to multi-objectivity of the problem, increasing the conver-
gence rate without finding the global best particle (Abido, 2010).

A suite of MOPSO methods have been introduced in the past
two decades. Coello and Lechuga (2002) proposed a MOPSO
method based on investigation of externally archived non-
dominated solutions. In this MOPSO, the best solution in the
archive with the smallest density value is assigned the maximum
probability to be found as the global best by imposing a selection
operator similar to the roulette-wheel selection operator. To find
the personal best particle in this MOPSO, the new position is
selected only if it dominates the old position and in case of non-
dominance of either position, one of them is randomly selected
as the personal best position. Performance-wise, the main draw-
back of these MOPSOs results from neglecting the fitness among
the non-dominated solutions, the dominance criteria, and the
way to consider density of solutions. Mostaghim and Teich
(2003a) proposed a sigma method in which the sigma vector for
each particle is the gradient of a line drawn between that particle
and the origin. The algorithm selects the guide (global best) parti-
cle by finding the nearest non-dominated member in terms of
Euclidian distance between that member’s sigma value and that
of the swarm member, assigning each particle a particular global
best. This process may cause premature convergence in some cases
such as multi-frontal problems (Abido, 2010). Furthermore,
Mostaghim and Teich (2003b) proposed using e-dominance in
MOPSO. This method limits the number of non-dominated solu-
tions in the archive which is very influential in the algorithm run-
ning time, rate of convergence and diversity (Abido, 2010). They
also introduced a new method which uses the property of moving
particles in MOPSO to divide the population into sub-swarms
(Mostaghim and Teich, 2004), trying to cover the gaps between
the non-dominated solutions found in the initial run.

Wei and Wang (2006) proposed a novel MOPSO algorithm in
which a three-parent crossover operator was suggested in order
to move the solutions toward the feasible region, and a dynami-
cally changing inertia weight was designed to keep the diversity
of the swarm and escape from local optima. Ireland et al. (2006)
introduced a centroid method to construct the guide particle based
upon a distance-weighted average of the archive members. They
concluded that the centroid method generates more diversity in
the Pareto-front with slow convergence as compared with the
sigma method which has a tendency to converge too rapidly with
very little diversity. Thus, they developed a hybrid centroid/sigma
algorithm as a more efficient and robust MOPSO algorithm. Reddy
and Kumar (2007a) proposed an efficient multi-objective PSO algo-
rithm, in which a variable size external repository is employed to
store non-dominated solutions. They also applied a crowding dis-
tance operator to measure the amount of diversity of the stored
solutions whenever the size of the repository exceeds desired size
while doing mutation on the solutions using a strategy called
elitist-mutation whenever needed. Reddy and Kumar (2007b)
employed their proposed EM-MOPSO algorithm to solve a multi-
objective reservoir operation problem. Thereafter, they reduced
the obtained non-dominated solutions to a few representative
ones, applying a clustering technique to ease handling the solu-
tions. Finally for facilitating the decision-making, a pseudo-
weight vector was calculated for each objective over Pareto-front
points and the desired weight combination was extracted.
Cabrera and Coello (2010) proposed Micro-MOPSO to handle very
small population sizes using an auxiliary archive for storing non-
dominated solutions found throughout the search, and a final
archive for storing final non-dominated solutions. In this algo-
rithm, the global best particle (called the leader) is selected from
a sub-set of the final archive members with the best crowding dis-
tances. The neighborhood for creating the swarm is then selected
based on the smallest Euclidian distance to the leader particle,
while implementing a reinitialization process and a mutation oper-
ator to avoid stagnation.

Abido (2010) introduced an approach using two sets of non-
dominated solutions, i.e., a non-dominated local set to store the
non-dominated solutions obtained by the jth particle to the current
time (i.e., S�j ðtÞ) and a non-dominated global set to store the non-
dominated solutions obtained by all particles up to the current
time (i.e., S��ðtÞ). Then the individual distances between members
in S�j ðtÞ and members in S��ðtÞ are measured in the objective space.
If X�

j ðtÞ and X��
j ðtÞ are, respectively, members of S�j ðtÞ and S��ðtÞ that

give the minimum distance, they are selected as the personal best
and the global best of the jth particle. Liu and Zhao (2011) pro-
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posed eDMOPSO algorithm which was the basis for an improved
multi-objective PSO with orthogonal design and crossover (Liu
et al., 2012). In this method, the orthogonal design was used to
generate the initial swarm, while a new crossover operator was
designed to keep solutions in the feasible region.

There are few applications of PSO or MOPSO algorithm in water
resources management, chiefly in reservoir operation problems
(Baltar and Fontane, 2006; Kumar and Reddy, 2007; Afshar,
2012; Lu et al., 2013). In this paper, MOPSO has been applied for
conjunctive surface water and groundwater management. A new
algorithm structure is proposed that can perform better than other
evolutionary algorithms in solving complex conjunctive use man-
agement problems. Section 2 provides background information
on single-objective and multi-objective PSO, presenting a novel
fuzzy MOPSO named f-MOPSO, discussing its theoretical underpin-
nings, as well as its unique capabilities as compared with other
MOPSOs based on the introduced performance criteria. The case
study and optimization model formulation are discussed in Sec-
tion 3. Results are presented and discussed in Section 4. Section 5
concludes the paper.

2. Methodology

2.1. Single-Objective Particle Swarm Optimization

As the name suggests, single-objective PSO (SOPSO) is applied
to optimization problems with one objective. Suppose for a d-
dimensional optimization problem, Xi = (xi1, xi2, . . ., xid) and Vi =
(vi1, vi2, . . ., vid) are the ith particle’s position vector and velocity
vector, respectively. If Pi = (pi1, pi2, . . ., pid) is the best previously vis-
ited position or the personal best position of the ith particle and
Pg = (pg1, pg2, . . ., pgd) represents the global best position of the
swarm, the velocity and position of each particle are updated using
Eqs. (1) and (2) (Norouzzadeh et al., 2012):

Vtþ1
i ¼ wVt

i þ c1r1 Pt
i � Xt

i

� �þ c2r2 Pt
g � Xt

i

� �
ð1Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð2Þ

where d 2 f1;2; . . . ;Dg, i 2 f1;2; . . . ;Ng, D is the number of dimen-
sions and N is the swarm size; superscript t is the iteration number;
w is the inertia weight that hinders the velocity vector to be unlim-
itedly large which may cause algorithm to diverge near the opti-
mum positions; r1 and r2 are two random vectors and c1 and c2
are cognitive and social scaling parameters.

An efficient form of Eq. (1) is the constriction coefficient model
shown below (Norouzzadeh et al., 2012):

Vtþ1
i ¼ v Vt

i þu1 Pt
i � Xt

i

� �þu2 Pt
g � Xt

i

� �h i
ð3Þ

v ¼ 2k
j2�u� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðu� 4Þp j ; u ¼ u1 þu2; u1 ¼ c1r1; u2 ¼ c2r2

ð4Þ
where v is constriction factor.

The parameter k 2 ½0;1� in Eq. (4) controls the exploration and
exploitation abilities of the swarm, which can be calculated as fol-
lows (Shi and Eberhart, 1998a, 1998b; Veldhuizen, 1999).

k ¼ kmax � kmax � kmin

itermax
� n ð5Þ

where kmax and kmin are constants that must be set properly; n is the
number of iterations; and itermax is the maximum number of
iterations.

In this paper, the lower and upper bounds of velocity vector are
limited to pre-defined values of Vmin and Vmax (Eq. (6)) to restrict
the particles’ velocity vector variations to preserve them in the
solution space:

Vmin < Vtþ1
i < Vmax; Vmin ¼ �Vmax ð6Þ

where Vmin and Vmax are the velocity vector bounds. When the par-
ticle’s position exceeds the limits considered for that position, it is
restored and fixed to the limits. To hinder the particle from exiting
the feasible space in the next iterations Vtþ1

i is replaced with �Vtþ1
i

in the particle’s dimension position.

2.2. Multi-objective PSO (MOPSO)

First method: The structure of the first method is similar to the
VEPSO algorithm (Parsopoulos and Vrahatis, 2002), in which mul-
tiple swarms are employed rather than a single one to find an opti-
mal Pareto-front. In VEPSO algorithm, the number of swarms is the
same as the number of objectives. A particle’s velocity when the
number of particles is N is updated by:

Vtþ1
i;sn ¼ v Vt

i;sn þu1 Pt
i;sn � Xt

i;sn

� �
þu2 Pt

g;sn� � Xt
i;sn

� �h i
ð7Þ

where i 2 f1;2; . . . ;Ng; sn is swarm number; and sn⁄ is the swarm
number from which the global best particle comes, which is calcu-
lated as follows:

sn� ¼ m for sn ¼ 1
sn� 1 for sn ¼ 2; . . . ;m

�
ð8Þ

where m is the maximum number of swarms (Fallah-Mehdipour
et al., 2011).

Second method: In this method, all objectives are used to find
the personal best solutions, as well as the global best particle of the
swarm. The velocity vector is updated with respect to all the objec-
tives. Thus, Eq. (3) takes the following form (Eq. (9)):

Vtþ1
i ¼ v Vt

i þ
u1

m

Xm
j¼1

Pt
i;j � Xt

i

� �
þu2

m

Xm
j¼1

Pt
g;j � Xt

i

� �" #
ð9Þ

where m is the number of objectives, Pi,j is the best position of ith
particle for jth objective and Pg,j is the best position of the swarm
for jth objective. Other characteristics of the algorithm in this
method are similar to the SOPSO (Fallah-Mehdipour et al., 2011).

2.3. Proposed method: fuzzy Multi-Objective Particle Swarm
Optimization (f-MOPSO)

An important limitation of many MOPSO algorithms in solving
multi-objective problems lies in the selection mechanisms. There
are some recommended selection mechanisms such as: random
selections or allocating all non-dominated solutions the same
degree of importance in terms of fitness and discriminating them
by crowding distance operator to select the best particle. For over-
coming this problem, the need to select the best particle occasion-
ally turns into having to select more than one best particle to
generate the next population. The latter solution may cause the
algorithm to prematurely converge to the optimum point. Thus,
in this paper the former solutions are considered when identifying
the global best solution. For this purpose, both the generating
methods and preference methods common in Multi-Criteria Deci-
sion Making (MCDM) are required to simultaneously compare
the obtained solutions. The suggested method utilizes the context
of the weighting method to comprehensively generate and com-
pare the solutions and give the personal and global bests. The
weighting method determines the non-dominated points among
all the points in the feasible solutions, forming the Pareto-
optimal front. The Pareto-front consists of a number of points in
which every point corresponds to a set of weights denoting the
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partial derivatives of the pairwise objectives. The general weight-
ing method equation is given below:

Z ¼ W1Z1 þW2Z2 þ � � � þWnZn ð10Þ
where Wi is the weight assigned to ith objective function and Zi is
ith objective function while i = 1, 2, . . ., n. In a two-dimensional
objective space of Z1 and Z2, the equation is:

W2

W1
¼ � @Z1

@Z2
ð11Þ

and in a three-dimensional objective space there are three equa-
tions as follows:

W1

W2
¼ � @Z2

@Z1
ð12Þ

W1

W3
¼ � @Z3

@Z1
ð13Þ

W2

W3
¼ � @Z3

@Z2
ð14Þ

By definition, each point on the Pareto-front is a non-dominated
solution, which produces the best objective function values with
respect to its own location. However, if other sets of weights or
slopes belonging to other locations in the Pareto-front are imposed
on these points, they will have a Z value in other locations (Eq.
(10)). Thus, each point has a performance related to each set of
weights and all these partial performances contribute to the over-
all performance of a point, indicating the solution’s optimality.
Hence, the weighting method could also work as a preference
method to give the best point in the Pareto-front and discriminate
the optimal and near-optimal solutions of the optimization pro-
cess, simultaneously. This approach motivates employing the fuzzy
logic (Zadeh, 1965), in MOPSO, and hence is named f-MOPSO. Each
partial performance of a point could be stressed with a member-
ship degree (MD) dedicating to that partial performance. The com-
parison process to distinguish the solutions could be done based on
a Sugeno Fuzzy Inference System (SFIS) (Takagi and Sugeno, 1985),
in which the objectives are the premises and the partial perfor-
mances (Z values) are the consequences of SFIS rules. The SFIS for-
mulation is as follows:

If Z0
1 is A1

1 and Z0
2 is A1

2 Then Z1 ¼ W1
1Z

0
1 þW1

2Z
0
2 ð15Þ

If Z0
1 is A2

1 and Z0
2 is A2

2 Then Z2 ¼ W2
1Z

0
1 þW2

2Z
0
2 ð16Þ

..

. ..
. ..

.

If Z0
1 is An

1 and Z0
2 is An

2 Then Zn ¼ Wn
1Z

0
1 þWn

2Z
0
2Z

0
2 ð17Þ

In the bi-objective version of f-MOPSO (discussed in this paper),
which can be developed to cope with any multi-objective problem,
first, different sets of weights or slopes of the Pareto-front are con-
sidered, allowing each weight to change between 0 and 1 such that
the sum of the two weights is equal to 1, i.e., increasing one weight
results in decreasing the other weight. This weighting method cov-
ers all weight combinations, i.e., all slopes of the Pareto-front. The
smaller the decreasing or increasing weight step, the more accu-
rate the performance of the SFIS will be. Then, the objectives are
normalized in order to become commensurable and different cases
are considered to form the SFIS rules through the equations below:

Z0
1 ¼ Z1 � Z1;min

Z1;max � Z1;min
ð18Þ

Z0
2 ¼ Z2 � Z2;min

Z2;max � Z2;min
ð19Þ
For minimization purposes, if W1 <W2, considering the higher
values of Z0

1 along with the lower values of Z0
2 results in a smaller

value of Z, indicating the best performance of those objectives
under these weights. The approach works when W1 >W2, too. In
this case, the lower values of Z0

1 as well as the higher values are
considered. In practical applications, a pre-optimization process
will be implemented whereby a number of uniformly distributed
random solutions are generated, and the corresponding objective
function values are calculated. The fitness of the number of gener-
ated objective functions depends on the ability of covering all func-
tions being generated as the algorithm progresses. The obtained
objective function values are then divided into three classes named
High, Middle and Low based on the values of each objective. For
each class a membership function (MF) is defined. In this paper,
the descending Sigmoidal MF is chosen for this purpose. The
MF’s equation is as follows:

Sigðx; a; cÞ ¼ f ¼ 1
1þ eaðx�cÞ ð20Þ

where a > 0 denotes and controls the slope in crossover point and c
represents the crossover point. For simplification, this MF is com-
pared with a well-known Gaussian MF (Fig. 1):

Gaussianðx;l;rÞ ¼ f ¼ e�
ðx�lÞ2
2r2 ð21Þ
Fig. 1. (a) Sigmoidal and (b) Gaussian membership function.
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in which l is the mean of the variable (e.g., objective function
value) fuzzified through this equation, and r is the standard devia-
tion of those values.

To avoid the trial and error procedure to determine MFs of the
SFIS rules, the parameters a and c in Eq. (20) depend on the statis-
tical parameters, e.g. l and r, in Eq. (21). The intersection point of
the ascending and descending Sigmoidal MFs (Eq. (20)) with a < 0
and a > 0, respectively, is x = c. Since these two types of Sigmoidal
MFs belong to two conflicting concepts, and are complementary,
the x value of the intersection point will be the mean, thus c = l.
This result comes from the corollary that the mean value of a fuzzy
variable in complementary MFs is not biased to any direction and
gives the same value of f in those MFs, which is 0.5 in this case.

Another approximation is related to the slope of the MFs in the
crossover point as calculated below for the descending Sigmoidal
functions in which a > 0:

Sigðx; a; cÞ ¼ f ¼ 1
1þ eaðx�cÞ ð22Þ

df
dx

¼ f 0 ¼ �a � eaðx�cÞ

½1þ eaðx�cÞ�2
ð23Þ

f 0ðx ¼ cÞ ¼ � a
4

ð24Þ

The crossover point of the Gaussian MF is calculated below:

Gaussianðx;l;rÞ ¼ f ¼ e�
ðx�lÞ2
2r2 ð25Þ

df
dx

¼ f 0 ¼ � 1
r2 ðx� lÞe�ðx�lÞ2

2r2 ð26Þ

d2f

dx2
¼ f 00 ¼ e�

ðx�lÞ2
2r2

�1
r2 þ ðx� lÞ2

r4

 !
ð27Þ

At crossover point, ðf 00 ¼ 0Þ, so:
�r2 þ ðx� lÞ2 ¼ 0 ð28Þ

xcrossover ¼ lþ r ð29Þ
And the slope in the crossover point of the Gaussian MF is cal-

culated as follows:

Gaussianðx;l;rÞ ¼ f ¼ e�
ðx�lÞ2
2r2 ð30Þ

df
dx

¼ f 0 ¼ � 1
r2 ðx� lÞe�ðx�lÞ2

2r2 ð31Þ

f 0ðxcrossover ¼ lþ rÞ ¼ � 1
r
ffiffiffi
e

p ð32Þ
Table 1
Types of MFs contributing to form SFIS rules assuming weight step = 0.1.

W1 W2 Z0
1=Z

0
2

0 1 High/Mid
0.1 0.9 High/Mid
0.2 0.8 High/Mid
0.3 0.7 High/Mid
0.4 0.6 High/Mid
0.5 0.5 Low/Low
0.6 0.4 Low/Mid
0.7 0.3 Low/Mid
0.8 0.2 Low/Mid
0.9 0.1 Low/Mid
1 0 Low/Mid
By equating the two slopes of Sigmoidal and Gaussian MFs in
the crossover point in Eqs. (24) and (32), the parameter a is derived
in terms of r:

� a
4
¼ � 1

r
ffiffiffi
e

p ð33Þ
a ¼ 4
r
ffiffiffi
e

p ð34Þ

Consequently, the parameters a and c can be derived in terms of
statistical parameters l and r.

In this method, the best overall performance of each point is
compared to other points. This logic is underpinned by the SFIS
rules. In a SFIS rule where W1 <W2 and the MF of Z0

1 is High and
that of Z0

2 is Low, the equal absolute amount of Increase in Z0
1

and decrease in Z0
2 causes a decrease in the corresponding Z. There-

fore, a larger MD must be assigned to that Z in order to impart
importance to low values of Z to support the logic of this method.
But in this case, based on the shape of descending Sigmoidal MFs, it
can be seen that the larger the Z0

1, the smaller the MD, and the
smaller the Z0

2, the larger its MD will be. Using the Mamdani impli-
cation function (Mamdani, 1974), the minimum of two MDs is con-
sidered as the resulting MD. This minimum may decrease,
although it is expected to increase to make the lessened value of
Z significant. To solve this problem the algebraic product-based

Larsen implication is used instead, giving ðl j ¼ l j
Z1

� l j
Z2
Þ where j

is the number of rule and l j is the MD of the consequence of the
rule j resulting from implication. With a similar inference, the Lar-
sen implication seems to be more appropriate for use in all the SFIS
rules in the f-MOPSO algorithm. If the product of MDs is consid-
ered, even if the l j remains constant, then the value of Z of rule j
has decreased and has its impact on the final defuzzified result.
Furthermore, this impact will be less than the impact of a case in
which Z0

1 and Z0
2 both decrease, increasing their MDs and the pro-

duct of the MDs, which is logical and plausible.
Finally, the weighted average is utilized as a defuzzification

method, and a comprehensive Dominance Index (DI) is obtained
using the equation below:

DI ¼
Pn

j¼1l jZ jPn
j¼1l j

ð35Þ

This equation gives the defuzzified value of Z over all rules of
SFIS. The less the DI, the better that solution with the normalized
objectives Z0

1 and Z0
2. Table 1 summarizes how the SFIS rules were

applied in the current f-MOPSO application.
In any iteration of f-MOPSO, the minimum value of DI between

current and new particle represents the personal best particle, and
the minimum DI obtained from all personal bests of the swarm
denotes the global best particle in that iteration. Other calculations
High/Low Mid/Low Low/Low
High/Low Mid/Low Low/Low
High/Low Mid/Low Low/Low
High/Low Mid/Low Low/Low
High/Low Mid/Low Low/Low
– – –
Low/High Mid/High Low/Low
Low/High Mid/High Low/Low
Low/High Mid/High Low/Low
Low/High Mid/High Low/Low
Low/High Mid/High Low/Low
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are the same as in a Single-Objective PSO (SOPSO). Moreover, the
non-dominated solutions from each iteration round are stored in
an external archive, while storing the best solution of that iteration
round, found based on the minimum DI in another external
archive. The final results stored in the archives include all the
non-dominated solutions that form a Pareto-front, and the best
of global best particles over all iterations of the algorithm as the
best unique solution.

2.4. Performance criteria

To determine the best performing multi-objective method, the
performance of each method is evaluated under different criteria.
Results of the presented stochastic MOPSO methods depend on
randomly generated starting populations. Therefore, a number of
runs were performed for each method and evaluated along with
the results of the other two methods based on three performance
criteria, namely Generational Distance (GD), Spacing (S), and Num-
ber of Solutions (NS). Due to the evolutionary nature of the applied
MOPSO methods, it is not unexpected to observe that performance
would change under different runs of the same model. However,
when the results obtained from multiple runs of each MOPSO
method are synthesized, they represent the goodness of the overall
performance of each MOPSO algorithm compared with other
MOPSO algorithms. Thus, these performance criteria provide a rea-
sonable and consistent basis for evaluating the MOPSOs, especially
when they are applied in the context of a real-world conjunctive
surface water and groundwater management optimization prob-
lem. The performance criteria are as follows.

2.4.1. Generational distance (GD)
This performance metric was suggested by Veldhuizen (1999)

to find the average distance between the non-dominated solutions
and the optimal Pareto-front to minimize the distance of the
Fig. 2. Najafabad Plain in the Zay
Pareto-front produced by MOPSOs with respect to the true
Pareto-front:

GD ¼ 1
NS

ffiffiffiffiffiffiffiffiffiffiffiffiXNS
i¼1

d2
i

vuut ð36Þ

where GD = generational distance; NS = number of solutions found
and di = Euclidean distance (in the objective space) between each
non-dominated solution and the nearest member of the optimal
Pareto-front.

In practical applications such as the example case in this study,
because there is no user-specified Pareto-front, the ideal point
including the best values of all objective functions has been consid-
ered as the reference-point and the basis of the Euclidean distance
calculation. Thus, the GD value is calculated with reference to the
comparative point called the ideal point.

2.4.2. Spacing (S)
This metric was proposed by Schott (1995) to maximize the dis-

tribution of solutions given by MOPSOs:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NS� 1

Xn
i¼1

ð�d� diÞ2
vuut ð37Þ

where S = spacing criteria and �d = mean of all di.
di is calculated using Eq. (38):

di ¼ Min
Xm
k¼1

f ikðxÞ � f j
kðxÞ

��� ���
 !

ð38Þ

where i = 1, 2, . . ., NS, j = 1, 2, . . ., NS – 1; m = number of objectives

and f j
kðxÞ = kth objective for the jth solution. Thus, the minimum

value of S is zero which means that the identified solutions are
equidistantly distributed in the objective space.
andeh-Rud River Basin, Iran.
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2.4.3. Number of solutions (NS)
This performance metric was considered in order to attain the

goal of maximizing the number of elements of the Pareto-
optimal set. There is no upper bound for NS which means the
greater the number of solutions, the better the set of non-
dominated solutions. It is suggested to meticulously evaluate the
values of the best objective functions, taking these metrics into
account, too, as two more performance metrics.
3. Case study of conjunctive surface and groundwater use
management

The study area is Najafabad Plain, a part of the Zayandeh-Rud
River Basin (read more about this basin in Safavi et al. (2010),
Safavi and Esmikhani (2013) and Gohari et al. (2013, 2014)) located
in west-central Iran (Fig. 2). In recent years, water has become
increasingly scarce in the region and the Zayandeh-Rud River Basin
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Table 4
Relative closeness index of the MOPSOs applied to a 12-month operation period
(Boldfaced numbers indicate the best performing algorithm with reference to a
certain zone).

1st method 2nd method f-MOPSO

Nekouabad Right zone 0 0.51 0.91
Nekouabad Left zone 0.36 0.41 0.83

Table 2
Correlation coefficients resulting from ANN model in all MOPSOs.

Training (R) Test (R) Validation (R) Total (R)

N-Right 0.60 0.38 0.51 0.55
N-Left 0.62 0.46 0.31 0.52
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has shown signs of salinization of agricultural land and increased
pollution in the lower reaches of the river. The Najafabad Plain
occupies an area of approximately 1720 km2 underlain by the
Najafabad Aquifer with an area of about 1142 km2, with geograph-
ical coordinates between 50� 570–51� 440 North longitudes and 32�
200–32� 490 East latitudes. The Najafabad Aquifer is recharged by
irrigation infiltration, canal and river seepages, as well as direct
precipitation on the plain. There are about 10,160 pumping wells
in the area with depths ranging between 17 m and 120 m, and dis-
charge rates ranging from 2 to 110 L/s (Safavi and Rezaei, 2015).

The Najafabad Plain is predominantly semi-arid with an aver-
age annual rainfall of only 150 mm most of which falls in winter
months (i.e., December to April). Annual potential evapotranspira-
tion is about 1950 mm. Modern surface irrigation started about
40 years ago after Nekouabad diversion weir was built. The weir
controls two main channels on its left and right banks (two irriga-
tion zones) as shown in Fig. 3. Over the past decade, historical low
precipitation occurred at the head of the Zayandeh-Rud Basin,
increasing water scarcity in the region. The water scarcity problem
was further aggravated by growing demand for water. To cope
with the drought condition, farmers have had to implement field
scale response strategies, including increased groundwater use,
adapted farming and production strategies, or adopting other
activities for their livelihood (Safavi et al., 2010).

If groundwater extraction continues at present rate, there will
be a drastic decline in groundwater storage. Thus, both sources
of water must be used in order to minimize water supply related
risks in drought conditions and minimize pressure on groundwater
sources in non-drought conditions. A conjunctive water use model
utilizing three MOPSO algorithms (including the aforementioned
first and second MOPSOs and also the proposed f-MOPSO algo-
rithm) is introduced so as to minimize water shortages as well as
groundwater withdrawals in the Najafabad Plain subject to con-
straints related to allowable groundwater storage decline and
maximum available surface water supply or irrigation channels’
capacities.

In a conjunctive surface and ground water use system, surface
water deficit is compensated for by increasing groundwater extrac-
tion in drought situations and/or groundwater is replenished by
surface water when surface water is abundant. Optimal manage-
ment of the surface water and groundwater resources is critical
for effective and efficient conjunctive management schemes
(Safavi et al., 2010). The MOPSO algorithms were applied to find
the optimal surface water and groundwater allocation schemes
in the water-scarce Najafabad Plain, examining the algorithms’
capability to support decision making in a real-world context.
Table 3
Comparison of the MOPSOs’ performance over a 12-month operation period (Boldfaced nu

Criterion Nekouabad Right zone

1st method 2nd method f-MOPS

GD 0.77 0.3 0.02
S 0.40 0.09 0.003
NS 15 23 744
Z1,min 0.70 0.12 0.47
Z2,min 39.66 38.92 17.15
Z1,optimum – – 0.97
Z2,optimum – – 17.15
The objectives of the optimization model were minimizing def-
icits in meeting irrigation demands in each of two main zones in
the Najafabad Plain, and minimizing groundwater level (GWL)
variation to prevent negative groundwater balance due to draw-
down, and crop damage due to waterlogging. The model prescribes
optimal groundwater extraction subject to such constraints as
maximum and minimum allowable cumulative variation in GWL
and the maximum surface irrigation systems supply. The optimiza-
tion model formulation is given below (Eqs. (39)–(51)):

Minimize Z1 ¼
X12
i¼1

ðDi;z � Supi;z;netÞ=Di;z
� �2 þ Zpen for z

¼ 1;2 ð39Þ

Minimize Z2 ¼
X12
i¼1

ðDHi;z � DHoptÞ=DHopt
� �2 for z ¼ 1;2 ð40Þ

Subject to:

Zpen ¼ R � 1þ sgn
X12
i¼1

DHi;z � DHmin

 ! X12
i¼1

DHi;z � DHmax

 !" #( )

ð41Þ

Di;z ¼
XM
m¼1

cropi;mAi;m; for i ¼ 1;2; . . . ;12 ð42Þ

Ai;z ¼
XM
m¼1

Ai;m; for i ¼ 1;2; . . . ;12 and z ¼ 1;2 ð43Þ

Supi;z;net ¼ GWi;z;net þ SWi;z;net ð44Þ

GWi;z;net ¼ azGWi;z ð45Þ

SWi;z;net ¼ azbzczSWi;z ð46Þ

SWi;z ¼ Di;z=azbzcz and GWi;z ¼ 0; If SWi;z;net P Di;z ð47Þ

GWi;z ¼ ðDi;z � SWi;z;netÞ=az; If ðSWi;z;net

< Di;zÞ and ðGWi;z;net P Di;z � SWi;z;netÞ ð48Þ

DHmin 6
X12
i¼1

DHi;z 6 DHmax; for z ¼ 1;2 ð49Þ
mbers represent the best performing algorithm with reference to a certain criterion).

Nekouabad Left zone

O 1st method 2nd method f-MOPSO

12.97 3.62 0.97
0.81 3.55 0.67
23 32 141
0.49 0.73 0.92
53.87 29.12 7.59
– – 4.76
– – 7.59



F. Rezaei et al. / Journal of Hydro-environment Research 14 (2017) 1–18 9
SWi;z 6 SWavail
i;z ; for i ¼ 1;2; . . . ;12 and z ¼ 1;2 ð50Þ

GWi;z 6 Di;z=az ð51Þ
where Di,z = volume of water demand in zone z in month i (MCM);
Supi,z = volume of water supply in zone z in month i (MCM); DHi,

z = GWL variation in zone z in month i (m); DHopt = the optimum
GWL variation, assumed to be a trivial value; Zpen = penalty for sat-
isfying cumulative GWL variation constraint mentioned in Eq. (49);
R = penalty coefficient; cropi,m = volume of water needed per unit
cultivated area for crop m in month i (MCM/m2); Ai,m = cultivated
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Fig. 5. Water demand and monthly surface water and groundwater allocated to Nekouab
and (c) the proposed f-MOPSO method.
area of crop m in month i; Ai,z = arable area of zone z in month i
(ha); az = farm water use efficiency in zone z (set to be 0.56 here);
bz = efficiency of water use in the main channels in zone z (set to
be 0.85 here); cz = water use efficiency in the secondary channels
in zone z (set to be 0.90 here); GWi,z,net = net volume of groundwater
extracted in zone z in month i (MCM); GWi,z = gross volume of
groundwater extracted in zone z in month i (MCM); SWi,z,net = net
volume of surface water withdrawal delivered to zone z in month
i (MCM); SWi,z = gross volume of surface water withdrawal deliv-
ered to zone z in month i (MCM); DHmin = minimum allowable
cumulative GWL variation in a year; DHmax = maximum allowable
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Fig. 6. Water demand and monthly surface water and groundwater allocated to Nekouabad Right zone based on the unique optimal solution of the proposed f-MOPSO
algorithm.
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cumulative GWL variation in a year; CCz = zone z’s maximum sur-
face water delivery capacity in month i (MCM); az = zone z’s surface

water network efficiency; SWavail
i;z = maximum volume of surface

water available to zone z in month i (MCM); i = number of months;
z = number of zones; m = number of crops.

The surface water upper bound, imposed as a constraint in the
optimization model, is the volume of available surface water in
each period in each irrigation system. The upper bound of ground-
water in each period was set equal to the demands in that period
for each zone (Eq. (51)). The planning horizon is October 2005
through September 2006, spanning a normal water year. Thus,
there are 24 decision variables including 12 monthly surface water
allocations, and 12 monthly groundwater extractions. To calculate
the GWL variation, and control this parameter in cumulative and
relative forms, a simulation model was used. The flowchart of
the coupled simulation-optimization framework employed to
solve the optimization problem is shown in Fig. 4.

This simulation model is a single hidden layer back-propagation
feed-forward Artificial Neural Network (ANN). The input layer of
this network included five parameters: (1) groundwater extrac-
tion; (2) precipitation; (3) evaporation; (4) surface water alloca-
tion; and (5) Initial GWL. All the data are reported as monthly
records and the output is, therefore, generated as monthly GWL
variations. In the ANN model, the precipitation, evaporation and
GWL parameters were considered as a monthly period-of-record
mean based on a 20-year record (1991–2010). The ANN is a 5-
30-1 network considering 30 neurons in the hidden layer. The
number of hidden layer neurons was determined after a number
of trial and errors in running the network until the maximum cor-
relation coefficient and/or the minimum sum of squared errors was
reached. For each two zones, the ANN model was independently
designed and run. All the data sets were divided into three parts
(i.e., 65% for training, 25% for testing, and 10% for validation) and
the ANN performance was evaluated based on criterion R as the
correlation coefficient. The calculated coefficients are shown in
Table 2, indicating a plausible precision in ANN’s learning without
overtraining the model. In this table and in Tables 3 and 4, the
expressions N-Right and N-Left stand for Nekouabad Right and
Nekouabad Left zones, respectively.
4. Results and discussion

The three MOPSO algorithms were independently applied to
find the best conjunctive use management policy for the Nek-
ouabad Right and Nekouabad Left banks. The number of particles
was set to 20 in each swarm and the maximum number of itera-
tions for the second and third (proposed) MOPSOs was set to 200
and for the first method 100 to consider the same number of func-
tion evaluations for all methods. Also a stall iteration number of 50
was considered for the second and third methods and 25 for the
first method. It was assumed that the algorithm would stop when
the maximum number of iterations is reached or the difference in
both objective functions corresponding to the global best particles
of each iteration over the number of stall iterations is less than 10–
6. Thus, iterations without any improvement in the objective func-
tion values were impeded, reducing the model’s run time. The
number of weight combinations employed in SFIS rules should
be large enough to cover all examined points on the Pareto-front,
allowing all these points to show their best performance. Further-
more, the combinations should render slopes of the Pareto-front to
be equidistantly distributed in the objective space to represent all
points of the Pareto-front unbiasedly to yield actual partial perfor-
mances for the solutions. Thus, the growing step of the weights in
the SFIS was set to 0.05. A set of 500 particles was adopted for the
pre-optimization stage to find the characteristics of the MFs as well
as the consequences’ singleton MFs of the SFIS in the third method.
Of the PSO parameters, c1 = c2 = 2.05 and the maximum level of
velocity was set to be 0.1 times the difference between the maxi-
mum and minimum values of the positions of each particle (deci-
sion variables) in each dimension. The results are presented in
Figs. 5–7.

A summary of the optimization results including the perfor-
mance criteria along with minimum objective values for the first
and second methods as well as the optimal objective values for
the f-MOPSO method are presented in Table 3.

In the Nekouabad Right zone, the minimum GD, S and the max-
imum NS were obtained from the proposed f-MOPSO algorithm.
The minimum Z1 was obtained from the second method and the
minimum Z2 of the f-MOPSO. As shown in Fig. 5a–c, the maximum
proportion of demand met using the first and second methods
occurred in months 2–4 which have the least demands over the
planning horizon. But the f-MOPSO nearly met full demand in
autumn and winter seasons of the planning horizon while facing
only a few shortages. The developed f-MOPSO algorithm outper-
formed the other MOPSO methods by finding optimal water alloca-
tions that meet the water demand in the noted high-demand
months. In regard to the minimum Z1, the water allocation on aver-
age met 81%, 93% and 86% of the water year demands in the first,
the second, and the proposed algorithms, respectively, indicating
marginal superior performance of the second method in minimiz-
ing shortages. These percentages were obtained from minimizing
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water supply shortages corresponding to the worst values for the
GWL variations.

A positive GWL variation indicates a rise in the groundwater
table due to recharge whereas a negative variation means ground-
water table drawdown due to withdrawal. The maximum ground-
water table drawdowns in all three methods were seen in the last
four months corresponding to a large volume of groundwater with-
drawal as dictated by the large volume of water demand imposed
on the model as the upper bound.

The maximum positive variation in GWL predominantly
occurred in the months 4–6 with the highest volume of recharge
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Fig. 7. Water demand and monthly surface water and groundwater allocated to Nekouab
and (c) the proposed f-MOPSO method.
due to winter precipitation. The cumulative GWL variation after
conjunctive use of water over 12 months was 1.76, 1.54 and
1.16 m in the first, second and the proposed MOPSOs, indicating
the proposed f-MOPSO method prescribes a better groundwater
withdrawal scheme.

The f-MOPSO algorithm is capable of finding the unique optimal
solution among a large number of non-dominated solutions. The
results obtained from non-dominated solution analysis given by
f-MOPSO are shown in Fig. 6. Briefly, the mean demand percentage
met by the optimal solution was 77% corresponding to the cumu-
lative GWL variation of 1.17 m. These values are consistent and
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Fig. 8. Water demand and monthly surface water and groundwater allocated to Nekouabad Left zone based on the unique optimal solution of the proposed f-MOPSO
algorithm.

Table 5
Comparison of the MOPSOs’ performance in a 10-year planning horizon (Boldfaced numbers represent the best performing algorithm with reference to a certain criterion).

Criterion Nekouabad Right zone Nekouabad Left zone

1st method 2nd method f-MOPSO 1st method 2nd method f-MOPSO

GD 6.73 3.51 18.777 19.30 6.61 0.036
S 1.46 1.59 3.49 13.03 7.07 0.028
NS 25 14 54 15 14 34
Z1,min 10.59 12.41 0.32 8.7 10.31 1.85
Z2,min 298.52 329.62 346.47 632.71 648.31 643.51
Z1,optimum – – 0.32 – – 1.85
Z2,optimum – – 508.49 – – 643.54
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demonstrate a relatively small GWL variation for water allocations
in the 12-month operation period.

In the Nekouabad Left zone, the minimum GD and S and the
maximum NS were given by the proposed f-MOPSO (Table 3). Min-
imum Z1 was achieved by the first method, while the minimum Z2
was found by f-MOPSO. As shown in Fig. 7a–c, for all methods, the
trend of proportion of demand met in Nekouabad Left is similar to
Nekouabad Right. The demands are almost completely met in the
first four low demand months, mostly by surface water and par-
tially met in other months, mainly by groundwater. The mean pro-
portion of demand met is 87%, 84% and 82% for the first method,
second method and the f-MOPSO, respectively.

The cumulative GWL variations over the 12-month planning
horizon were 3.26, �1.47 and �3.35 m for the first and second
methods and the f-MOPSO algorithm, respectively. These GWL
variations illustrate high monthly fluctuations in GWL for the first
method, while the surface and groundwater were exploited as
much as possible over all months. However, negative variations
in dry months were compensated by positive variations in wet
months over total period, causing GWL to rise and meeting a large
portion of demands. While, the f-MOPSO, and to some extent the
second method attempted to allocate water resources in balance
in order to maintain GWL on a monthly basis, rather than over
the 12-month period. Thus, the less mean demand percentage
met was provided by these methods compared to the first method
and despite achieving the little values of monthly GWL variations,
a large drawdown was obtained at the end of the period, mainly
due to cumulating the small monthly drawdowns over total period.

Mean demand percentage met and cumulative GWL variation
given by the f-MOPSO algorithm’s unique optimal solution are
50% and �3.29 m, respectively, (Fig. 8). These alarming values are
not surprising because of high water demands and low surface
water availability for irrigation in the Nekouabad Left zone.
Increasing the reliability of meeting demand in the Nekouabad Left
zone entails much more groundwater extraction, causing more
cumulative drawdown at the end of the operation period, which
underscores the challenges of short-term conjunctive water use
management in this water-scarce region. However in long-term
management, there may be all normal, wet and dry water years
over total period which contribute to maintain the total cumula-
tive GWL variations in balance, along with enhancing the water
demand portion met. This advantage is more illustrated in this
paper in the second scenario following at the end of this section.

To systematically evaluate the performance of the three algo-
rithms in the presented case study, the technique for order prefer-
ence by similarity to ideal solution (TOPSIS; Yoon and Hwang,
1995) was applied. TOPSIS is a multi-criteria decision making-
based selection method that ranks the algorithms based on all
the performance criteria. This is done by finding the alternative
having the shortest distance from the ideal solution and the far-
thest distance from the least favorable solution (anti-ideal solu-
tion). Here, the multi-objective PSO algorithms are the
alternatives, while the performance criteria (i.e., GD, S, and NS)
and minimum obtained Z1 and Z2 are considered as the TOPSIS cri-
teria. A decision matrix is constructed and normalized to make the
criteria commensurable. Then, the ideal and anti-ideal solutions
are determined and the Euclidean distance of each solution from
the ideal and anti-ideal solutions is calculated. Finally, the relative
closeness of each solution is calculated for all solutions as follows:

C�
i ¼

S�i
S�i þ Sþi

; 0 6 C�
i 6 1 and i ¼ 1;2; . . . ;p ð52Þ
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Fig. 9. Water demand and monthly surface water and groundwater allocated to Nekouabad Right zone based on the minimum Z1 value of first method (a), second method (b)
and (c) the proposed f-MOPSO method.
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where C�
i = relative closeness; S�i = Euclidean distance from the anti-

ideal solution; Sþi = Euclidean distance from the ideal solution; and
p ¼ number of solutions. The solution with the maximum value of
C�
i is ranked first and marked as the best performing solution.

Results of TOPSIS analysis of the solutions are shown in Table 4.
All the criteria were given the same weight (0.2), meaning that they
are equally important.
In a wide range of papers on multi-objective optimization, only
the first three criteria (NS, S and GD) are addressed (Cabrera and
Coello, 2010; Fallah-Mehdipour et al., 2011). But in this paper, the
last two criteria (minimum Z1 and Z2) were also considered in the
TOPSIS analysis to facilitate a robust performance evaluation.
Despite having relatively good values of NS, S and GD, the Pareto-
front generated by one algorithm may partially or entirely domi-
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Fig. 10. Cumulative GWL variation in Nekouabad Right zone resulting from the best Z2 values.
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Fig. 11. Water demand and monthly surface water and groundwater allocated to Nekouabad Right zone based on the unique optimal solution of the proposed f-MOPSO
method.
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nate the Pareto-front given by another algorithm. The objective
function values of the reference point of a Pareto-front may give a
non-dominated point compared to those of a different Pareto-
front. It is noteworthy that reference points should be included in
TOPSIS analysis only when one of them dominates the other, which
was the case in this paper. This is because two non-dominated ref-
erence points of two different Pareto-fronts will indicate no mean-
ingful differentiation in performance, meaning that using the first
three criteria for multi-criteria analysis will suffice.

The results attribute the first rank to the proposed f-MOPSO
algorithm in both Nekouabad Right and Nekouabad Left zones
compared to other algorithms tested in the 12-month operation
period optimization. The second and third ranks are assigned to
the second method and first method in both zones, respectively.
f-MOPSO’s performance was better than the other two MOPSO
algorithms in four out of the five TOPSIS criteria in both zones.

Assuming that the conjunctive use operating policy recom-
mended by MOPSO management models will be extended from
1-year operation period to a longer term planning period, the mod-
els were executed for a 10-year planning period (2004–2014) using
observed values of precipitation and evapotranspiration and the
upper bounds for groundwater extraction and surface water alloca-
tion volumes. The detailed results obtained from executing three
MOPSOs are summarized in Table 5.

In both zones, the first and second methods met slightly smaller
demand percentages over the 10-year period, as compared to the
12-month period. The f-MOPSO algorithm provides considerably
larger demand satisfaction resulting from both minimum and opti-
mal values of Z1. The detailed results for Nekouabad Right and Nek-
ouabad Left zones are shown in Figs. 9–11 and Figs. 12–14,
respectively. TOPSIS analysis of the algorithms’ performance over
the 10-year planning horizon shows that, in the Nekouabad Left
zone, by far the largest relative closeness value was assigned to
the f-MOPSO algorithm, followed by the second method, and first
method (Table 6). However, in the Nekouabad Right zone, the per-
formances of f-MOPSO and the first algorithm are identical, with
equal relative closeness values that are only marginally better than
the second method’s.
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Fig. 12. Water demand and monthly surface water and groundwater allocated to Nekouabad Left zone based on the minimum Z1 value of first method (a), second method (b)
and (c) the proposed f-MOPSO method.
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Finally, a comparative analysis was carried out on the potential
positive impacts of implementing the operating policy obtained
based on the f-MOPSO management model as compared to the
actual operations. The results suggest room for significant
improvements in conjunctive water resources management in
the Najafabad Plain. Nearly all annual demands could be met while
maintaining reasonable GWL variations (Table 7).
5. Conclusions

This paper proposed a new approach to deal with multi-
objectivity in MOPSO algorithms based on the role of weighting
method in Multi-Criteria Decision Making (MCDM). Each solution
is considered to have a partial performance in minimizing/maxi-
mizing the objectives corresponding to different combinations of
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Fig. 14. Water demand and monthly surface water and groundwater allocated to Nekouabad Left zone based on the unique optimal solution of the proposed f-MOPSO
method.

Table 6
Relative closeness to the ideal point for solutions of the MOPSOs applied to a 10-year
planning horizon (Boldfaced numbers indicate the best performing algorithm with
reference to a certain zone).

1st method 2nd method f-MOPSO

Nekouabad Right zone 0.52 0.47 0.52
Nekouabad Left zone 0.07 0.36 0.99
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weights denoting a particular point in the objective space. To take
all these partial performances into account, a Sugeno fuzzy infer-
ence system was designed. A comparison between Sigmoidal and
Gaussian membership functions was carried out to avoid trial
and error in determining membership function’s parameters. The
Sigmoidal function’s parameters were tuned based on the statisti-
cal parameters derived from a large domain of objective function
values in the pre-optimization stage. The proposed f-MOPSO
method discriminates both near-optimal and optimal solutions in
a MOPSO and selects the best unique solution when personal bests
or global best are needed in the iterations of the algorithm. The
method was compared with two other MOPSOs within a coupled
simulation-optimization model to solve the bi-objective conjunc-
tive water use problem of the Najafabad Plain, Iran. The models’
performance was investigated through two different management
scenarios, i.e., a normal 12-month period and a 10-year horizon
representing long-term operation and planning of the plain’s two
irrigation zones, i.e., Nekouabad Right and Nekouabad Left. In gen-
eral, superior solutions were obtained from the f-MOPSO as com-
pared with the other two MOPSO methods under both scenarios,
The f-MOPSO’s performance in the Nekouabad Right zone for a
10-year planning horizon was just similar to one of the other
MOPSO algorithms examined and better than all MOPSOs in the
Nekouabad Left zone. According to the management results, the
f-MOPSO solutions almost fully satisfied water demands in the
two irrigation zones throughout the 10-year planning horizon,
while maintaining monthly and cumulative groundwater level
(GWL) variations. Furthermore, the computational burden and
runtime of the proposed algorithm in the simulation-



Table 7
Comparison of water demand percentages met in actual operation conditions and as prescribed by the f-MOPSO management model.

Planning period (year) Actual operation f-MOPSO-based operating policy

N-Right N-Left N-Right N-Left

2004–2005 64.61 37.74 96.79 91.44
2005–2006 100.00 65.89 96.89 96.26
2006–2007 100.00 72.88 98.45 97.15
2007–2008 100.00 85.79 96.06 95.51
2008–2009 100.00 90.36 96.93 93.22
2009–2010 100.00 100.00 98.78 93.00
2010–2011 100.00 99.75 96.28 96.23
2011–2012 100.00 77.10 95.84 96.16
2012–2013 100.00 74.40 94.97 90.07
2013–2014 100.00 82.76 96.85 94.43
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optimization model were similar to the other two examined
MOPSO algorithms. The f-MOPSO offers a novel robust multi-
objective optimization algorithm to find a unique optimal solution
from among a large number of non-dominated solutions on the
Pareto-front.
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